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Abstract: We propose and study a reconstruction method for photoacoustic tomography (PAT)
based on total generalized variation (TGV) regularization for the inversion of the slice-wise
2D-Radon transform in 3D. The latter problem occurs for recently-developed PAT imaging
techniques with parallelized integrating ultrasound detection where projection data from various
directions is sequentially acquired. As the imaging speed is presently limited to 20 seconds per 3D
image, the reconstruction of temporally-resolved 3D sequences of, e.g., one heartbeat or breathing
cycle, is very challenging and currently, the presence of motion artifacts in the reconstructions
obstructs the applicability for biomedical research. In order to push these techniques forward
towards real time, it thus becomes necessary to reconstruct from less measured data such as
few-projection data and consequently, to employ sophisticated reconstruction methods in order to
avoid typical artifacts. The proposed TGV-regularized Radon inversion is a variational method
that is shown to be capable of such artifact-free inversion. It is validated by numerical simulations,
compared to filtered back projection (FBP), and performance-tested on real data from phantom as
well as in-vivo mouse experiments. The results indicate that a speed-up factor of four is possible
without compromising reconstruction quality.
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1. Introduction

Photoacoustic (or optoacoustic) tomography (PAT) is a promising imaging technology that
combines the favorable properties of pure optical and ultrasound imagingmethods. In general, PAT
images reveal a contrast determined by the absorption of pulsed laser light by natural endogenous
chromophores (e.g. hemoglobin, lipids) or by injected contrast agents (e.g. chromophores, gold
nano-particles) in biological samples. The conversion of the absorbed energy into ultrasound
occurs via the thermoelastic effect. Thereby, excited and expanding ultrasound waves are
monitored outside the sample and the contained information is used for image reconstruction.
Compared to other imaging modalities, PAT is a non-ionizing imaging modality with superior
blood-vessel contrast suitable for frequent screening purposes and provides higher spatial
resolution up to larger imaging depths compared to pure optical imaging. The asset and operating
costs are low compared to MRI systems. Examples of application areas of PAT are versatile such
as cancer diagnoses, neuronal imaging, hemodynamics monitoring and atherosclerotic plaques
detection [1–4].
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Current PAT systems differ in terms of ultrasound detection principle (e.g. piezoelectric,
optical), detection geometry (planar, spherical, linear, circular or arc), shape and size of used
detectors with the accompanied pros and cons of each implementation related to the delivery
of the excitation light, limited view problem, detection sensitivity [2,4–7]. While most of the
tomographic systems are implemented with ultrasound detection elements with dimensions
smaller than the object size, Burgholzer et. al [8] introduced the concept of using integrating area
and line detectors in PAT. This has the advantage that the signals are exact projections over areas
or lines enabling the use of numerically efficient reconstruction algorithms, such as the inverse
Radon transformation. In practice, the integrating line detector concept is preferable over large
area detection due to the easier technological implementation and the parallel detection capability.
PAT systems were built with 64 piezoelectric and optical fibers arranged as one dimensional
(1D) array along a half circle to record integrated time resolved pressure signals from various
directions simultaneously [9,10]. Thereby, projection images from the initial pressure source are
gathered in almost real-time only limited by the need of multiplexing due to the limitations of
data acquisition (DAQ) channels. As an alternative that does not require external electronics
such as amplifiers and analog-to-digital converters for each channel, we investigated the use of
a charge-coupled device (CCD) camera combined with an optical phase contrast technique for
acoustic detection [11,12]. The camera records projection images of the diverging wave pattern
at a defined wave propagation time. Hence, the information in recorded snapshots of the acoustic
field is purely spatially instead of temporally.

In general, the procedure to form a 3D image from projection data is separable into two steps.
First, the recording of integrated temporal pressure signals or acoustic wave pattern images from
several directions perpendicular to the rotation axis, where the data of each orientation is used
to reconstruct a 2D initial pressure distribution. The second step is to apply the inverse Radon
transform to the calculated projection data set such as in X-ray computed tomography. For the
reconstruction of the 2D initial pressure distributions from temporal pressure signals in the first
step, various direct methods are available, such as back projection [13,14], time reversal [15,16],
or frequency-domain [13,17,18] algorithms. Although each of these methods can be adapted to
spatial data, back propagation in frequency space [11,19,20] is often applied due to its numerical
efficiency and simple implementation.

The 3D imaging speed of currently implemented imaging systems is in the range of 20 seconds
and mainly limited by the sequential recording of the projection data from various directions
of the sample. Aiming at a certain resolution and imaging quality within a defined area, the
amount of projection data (orientations) is defined by the Nyquist sampling criterion when using
direct reconstruction methods such as the inverse Radon transform. A reduction of imaging
time towards real-time 3D PAT by parallelization, i.e., the simultaneous recording of several
projection directions, is very challenging with integrating detection schemes due to the lack of
space surrounding the sample.

Nevertheless, to investigate fast dynamic processes, we study to which degree it is possible to
speed up 3D imaging time by using less measured data and employing variational methods for
Radon transform inversion. The reasons for choosing variational regularization in this context
are threefold. First, approaches based on Tikhonov functional minimization are well-studied
in terms of stability with respect to noisy measurements and convergence for vanishing noise
[21]. Second, with respect to Radon inversion, the use of sophisticated image reconstruction
methods allows a reduction of the amount of projection directions without introducing image
distortion and stripe artifacts [22]. And third, appropriate regularization functionals have already
been successfully employed for few-view computed tomography, for example, the total variation
(TV) [23,24]. Nevertheless, other regularization strategies exist, such as Bayesian inversion or
inversion based on deep learning [25]. In particular, the latter has recently been analyzed with
respect to regularization of ill-posed inverse problems [26].
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In the context of variational regularization, TV is known for its edge-preserving properties [27]
and good regularization performance for inverse problems in imaging [28]. Total-variation-based
variational approaches have already successfully been employed for photoacoustic tomography
[29–32], but, to the best knowledge of the authors, only for point detectors and not for line-integral
detection strategies such as integrating line detectors or optical phase contrast techniques. While
TV-based approaches are generally useful for tomographic reconstruction from incomplete data,
one of their limitations is the tendency of TV to prefer piecewise constant images, which is
often not realistic and leads to artifacts, the so-called staircase effect. Many strategies for the
reduction of these artifacts have been proposed (such as, e.g., [33], but also regularizers involving
wavelet/curvelet transforms [34] or patch-based methods [35]), among which the total generalized
variation (TGV) constitutes an effective regularizer [36] which is convex, edge-preserving
and well-suited for inverse imaging problems [37,38]. In particular, TGV is an established
and adequate model for medical images with many successful applications being reported
in the medical imaging literature [39–45]. Also, recently, the potential of TGV-regularized
photoacoustic tomography with point detectors has been demonstrated [46], and CT/Radon
inversion with total generalized variation regularization has been established in the context of
X-ray [47] and electron tomography [48].

In this paper, we show the benefits of TGV-regularized Radon inversion applied to photoacoustic
tomography with line-integration strategies, in particular, for optical phase-contrast PAT imaging.
To the best knowledge of the authors, this is the first time that in this context, a full 3D variational
reconstruction is performed and validated, both numerically and experimentally, and using a
sophisticated image model, a realistic data set size as well as a sufficiently high image resolution.
In particular, regarding few-angle measurements, the proposed approach has the potential to push
the limits for optical phase-contrast PAT.

The article is organized as follows. In Section 2, we briefly introduce the mathematical model
which describes the photoacoustic imaging process in [11,12]. We present a solution strategy
which leads to the problem of inverting the Radon transform. For the latter, we propose TGV-
regularized inversion which yields a non-smooth, convex minimization problem. In Subsection
2.1, we discuss how such problems can be solved in general, while a concrete algorithm is
given in Subsection 2.2. In Section 3, a computational validation of the proposed model and a
comparison to filtered backprojection is presented. In particular, we investigate how a reduction
of the measurement data influences the image quality for a numerical phantom (Subsection 3.1)
as well as for real data (Subsection 3.2). Finally, conclusions are drawn in Section 4.

2. Problem formulation and solution method

In photoacoustic tomography, a biological sample is excited by pulsed laser light, which is
absorbed by natural endogenous chromophores or injected contrast agents. The absorbed energy
is converted into ultrasound waves via the thermoelastic effect. Due to these ultrasound waves, an
optical field outside of the sample attains a phase variation proportional to the pressure integrated
along the probe beam path, which we measure using a CCD-camera resulting in a phase-contrast
image. This phase-contrast image displays the integrated pressure induced phase variations:

R[pT ](s, ϕ, z) =
2π
λPB

dn
dp

R[pT ](s, ϕ, z) (1)

with dn/dp the elasto-optic coupling coefficient, λPB the wave length of the probe laser beam and
R[pT ] the two dimensional Radon transform of the pressure field p at the measurement time T
defined by

R[pT ](s, ϕ, z) :=
∫ L

−L
pT (sω(ϕ) + rω⊥(ϕ) + (0, 0, z)) dr. (2)
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Here, 2L is the integration length, ω(ϕ) = (cos(ϕ), sin(ϕ), 0) and ω⊥(ϕ) = (sin(ϕ),− cos(ϕ), 0).
The pressure p0 at time 0 in the sample region is proportional to the absorbed energy. Hence, the
task is to compute p0 from PIT to obtain a 3D-reconstruction of the test sample where the light
absorbing structures inside of the sample become visible.

The governing equation describing the pressure field p(t, x) at time t and location x = (x, y, z)
is the wave equation

∂2p
∂t2
(t, x) = c2s∆p(t, x), (3)

with initial pressure p(0, x) = p0(x), initial speed ∂p
∂t (0, x) = 0 and the speed of sound cs.

Combining this with the intertwining property of the Radon transform [49, Chapter 1, Lemma
2.1], i.e.,

R[∆p](s, ϕ, z) = ∆s,zR[p](s, ϕ, z), (4)

where ∆s,z is the Laplace operator with respect to s and z, yields the governing equation of the
projection data

∂2

∂t2
R[p](t, s, ϕ, z) = c2s∆s,zR[p](t, s, ϕ, z), (5)

with initial conditions R[p](0, s, ϕ, z) = R[p0](s, ϕ, z) and ∂
∂tR[p](0, s, ϕ, z) = 0. Therefore, the

initial pressure field p0 can be recovered in two steps.
In the first step, the projections of the initial pressure distribution R[p0] have to be computed

from the camera images PIT . This can be done using (1) and back propagation in the frequency
space [11,19]:

f (s, ϕ, z) ≈ R[p0](s, ϕ, z) = F−1s,z
[
Fs,z [2R[pT ]] cos(cs | · |T)

]
(s, ϕ, z), (6)

where Fs,z is the spatial Fourier operator with respect to s and z, and cos(cs | · |T) the time
propagator in the frequency domain causing a forward and backward wave propagation. Note that
R[pT ] is given by PIT only in the field of view of the camera, which covers detection angles always
smaller than 180◦ of the acoustic wave patterns originating from structures inside the sample
(Fig. 4(b)). This limited view problem introduces an additional error when applying Eq. (6) for
the computation ofR[p0] due to the lack of information along specific wave propagation directions
[50]. This error affects the final imaging result independent from the second reconstruction step
and is not subject of this work.
The second step is the reconstruction of the initial pressure p0 from f ≈ R[p0], which is the

starting point of the proposed work. This problem, however, is ill-posed as the Radon transform is
not continuously invertible on the data space, see, e.g., [51]. In practice, a filtered backprojection
(FBP) algorithm is often used for the inversion of the Radon transform where appropriate filters
have a regularizing effect, i.e., allow to overcome the ill-posedness. However, this approach
requires the presence of the projection data for each line that passes the region of interest. The
absence of full data, as it is the case if only a few projection angles are measured, typically leads
to undesired streaking artifacts in the reconstructions. For this reason, we do not use FBP but
consider instead the following minimization problem:

min
p0

µ

2
‖R[p0] − f ‖2 + Rα(p0), (7)

where Rα denotes a regularization term and α a possible parameter. One can think of Rα as a
functional which penalizes unwanted features of a solution p0. The first term ‖R[p0] − f ‖22 on
the other hand ensures that the Radon transform of a solution p0 of Eq. (7) is close to f . This
approach is known in literature as Tikhonov regularization [21,52,53].

Previous works [47,48,54–56] suggest that Total Variation (TV) and Total Generalized Variation
(TGV) are suitable candidates for the regularization term. In fact TV- or TGV-based regularization
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suppresses random noise and incoherent artifacts while preserving jumps in a solution. Let us
give a definition of TV and TGV.
For a given smooth function p on a set Ω its Total Variation (TV) can be defined by

TV(p) =
∫
Ω

|∇p| dx. (8)

While this representation is valid only for sufficiently smooth functions p for which the gradient
and the integrals are well-defined, the Total Variation also makes sense for integrable functions
whose distributional derivative is a Radon measure. We will, however, use TV only in a discrete
setting where no problems arise from this definition.
The second-order Total Generalized Variation (TGV) of a smooth function p on Ω can be

defined by

TGV2
α(p) = inf

v
α1

∫
Ω

|∇p − v| dx + α0
∫
Ω

|E(v)| dx. (9)

The infimum in this definition is taken over all vector fields v and E(v) denotes the symmetrized
derivative 1

2 (∇v + ∇v
T). The parameter α1 is typically set to 1 to allow for better comparability

with TV, while a suitable choice of α0 is discussed in Section 3. Again, Definition (9) can be
extended to non-smooth functions p, however, as before, we will only use it in the discrete setting.

Using TV as a regularizer in Tikhonov regularization for inverse problems eliminates fluctua-
tions but enforces piecewise constant solutions. This, however, can lead to staircase artifacts in
regions where the exact solution is not piecewise constant. By including not only first derivatives
but also second derivatives TGV overcomes this particular issue, which is demonstrated for
example in [36].
Using TGV as regularization term in (7) leads to the minimization problem

min
p0

µ

2
‖R[p0] − f ‖2 + TGV2

α(p0). (10)

This is a non-smooth, convex minimization problem. In the following section we discuss how
such a problem can be solved numerically.

2.1. Non-smooth, convex optimization

Problem (10) can be classified as a non-smooth, convex minimization problem. Hence, we would
like to shortly discuss the mathematical background of how one can solve such problems in general
[57,58]. For this purpose, let H1 and H2 be Hilbert spaces, F : H1 → R be convex, proper and
lower semi-continuous, i.e., there exists u ∈ H1 such that F(u) < ∞, for u1, u2 ∈ H1 and λ ∈ [0, 1]
there holds F(λu1+(1−λ)u2) ≤ λF(u1)+(1−λ)F(u2), and un → u implies F(u) ≤ lim infn F(un).
Let furthermore G : H2 → R

∞ be convex, proper and lower semi-continuous and A : H1 → H2
be linear and continuous. Consider the convex minimization problem:

min
u∈H1

F(u) + G(Au). (11)

Suppose that a minimum of this problem exists. Under suitable conditions (see, e.g., [58, Chapter
III]), one can reformulate the minimization problem (11) to the saddle-point problem

min
u∈dom F

sup
ξ ∈dom G∗

L(u, ξ), L(u, ξ) := 〈ξ,Au〉 + F(u) − G∗(ξ), (12)

where dom F = {u ∈ H1 : F(u) < ∞}, and G∗(ξ) is the Fenchel conjugate of G defined by

G∗ (ξ) = sup
u∈H
〈ξ, u〉 − G(u),

and dom G∗ is given analogously to dom F. In particular, if (u∗, ξ∗) is a solution of (12), then u∗
is a solution of (11). To solve the saddle-point problem (12), we use the primal-dual algorithm in
[59], outlined in Algorithm 1, which is an iterative procedure.
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Algorithm 1 Primal Dual Algorithm for the solution of (12)
Require: Parameters σ, τ>0, s.t. στ‖A‖2<1
Initialize: u0 = 0 ∈ H1, ū0 = 0 ∈ H1, ξ0 = 0 ∈ H2

for n = 0, 1, ...,N − 1 do
Dual Update:

ξn+1 = proxG∗σ (ξn + σAūn)
Primal Update:

un+1 = proxFτ (un − τA∗ξn+1)
Extragradient update:

ūn+1 = 2un+1 − un
end for

return (uN , ξN)

Here, the proximal mapping proxFτ is defined by

proxFσ(u0) = argmin
u∈H1

‖u − u0‖2

2
+ σF(u),

and proxG∗σ analogously. Run indefinitely, Algorithm 1 produces a sequence (un, ξn)n (weakly)
converging to a solution of (12). Here, we stop the computations after a predefined number
of steps N, where N is large enough such that convergence can be observed, i.e., that uN is
sufficiently close to a solution of (11).

2.2. Discretization and Radon inversion algorithm

To solve the minimization problem (10), we discretize it, bring it into the form of Eq. (11), and
apply the primal-dual algorithm (Algorithm 1). Here we follow the lines of [60, Chapter V].
We start with the discretization by defining suitable discrete function spaces. By a scaling

argument we can assume that the integration length L = 1 and that the pressure fields are
supported in the set ΩR := [−

√
2
2 ,
√
2
2 ] × [−

√
2
2 ,
√
2
2 ] × [0, h]. We discretize this set ΩR by

subdividing it into Nx × Nx × Nz equal cubes and describe these cubes by the index set
{0, . . . ,Nx − 1} × {0, . . . ,Nx − 1} × {0, . . . ,Nz − 1}. On this set we can define the following
function spaces:

P := RNx×Nx×Nz , V :=
(
R3

)Nx×Nx×Nz
, W :=

(
R6

)Nx×Nx×Nz
. (13)

The elements in P represent functions which are constant on the above described cubes. This
space P is going to be our reconstruction space. An element p ∈ P can be written in the form
(px,y,z)Nx−1,Nx−1,Nz−1

x=0,y=0,z=0 , where px,y,z is the value of p at the cube with index (x, y, z). Similarly,
elements in V andW represent piecewise constant, vector-valued functions with 3 and 6 elements,
respectively. These spaces contain the discrete gradients of functions in P and symmetrized
gradients of functions in V needed for the application of TGV in the discrete setting.
For the discretization of the data space or sinogram space, i.e., the space of functions on

the set ΩS := [−1, 1] × [0, π] × [0, h], we consider S := (R)Ns×Nϕ×Nz . Here, Ns denotes the
number of parallel lines whose integrals are measured, and which is usually set to approximately√
2N2

x + 2N2
y . Related to the experimental setup, Ns and Nz denote the amount of pixels of the

camera in horizontal and vertical direction. The value Nϕ denotes the number of angles from
which projections are taken. For the sake of simplicity, we assume in this paper that uniformly
distributed angles in the interval [0, π) are used. Non-uniform choices are also possible within
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the presented framework when taking straightforward adaptations into account, and might lead to
further improvements in reconstruction quality [32].
The spaces P and S equipped with the respective norms

‖p‖2P =
Nx−1∑
x=0

Nx−1∑
y=0

Nz−1∑
z=0
|px,y,z |2 , ‖f ‖2S =

Ns−1∑
s=0

Nϕ−1∑
ϕ=0

Nz−1∑
z=0
|f s,ϕ,z |2 ,

are Hilbert spaces. The corresponding inner products in both spaces are the sums of the
elementwise products. Later we will omit the indices P and S of the norms when it is clear from
the context which norm is used.
Using these spaces we can now consider the discrete minimization problem

min
p∈P

µ

2
‖Rp − f ‖2 + TGV2

α(p), (14)

where p and f denote the discrete solution and discrete datum, and R and TGV2
α the discrete

Radon transform and discrete TGV, respectively. For details about the regularization with αTV
instead of TGV2

α, we refer to Appendix A.2. The discretization of the Radon transform and its
adjoint, which is needed later, is a little cumbersome. We use the discretization described in [60,
Chapter V] to which we refer regarding further details. Here we continue by defining a suitable
discretization of TGV.
For sufficiently smooth functions the integrals in the definition of TGV (cf. Eq. (9)) can be

understood as the L1-norms of the Euclidean norms of the respective vector-valued functions.
Hence, for functions v ∈ V we can discretize such integrals by the `1 norm

‖v‖`1 :=
Nx−1∑
x=0

Nx−1∑
y=0

Nz−1∑
z=0
|vx,y,z |, (15)

and for functions w ∈ W by the analogously defined norm ‖w‖`1 . Note that an element in R6 is
interpreted as a symmetric matrix, and hence for such elements, | · | denotes the Frobenius norm.
This leads to the definition

TGV2
α(p) = min

q∈V
α1 ‖∇p − q‖`1 + α0 ‖Eq‖`1 for all p ∈ P. (16)

Here, ∇ and E denote discrete versions of the gradient and the symmetrized derivative. They
can be implemented using a standard finite difference approach, which is described in detail in
Appendix A.1. By inserting this definition, we can rewrite the minimization problem (14) to

min
p∈P,q∈V

µ

2
‖Rp − f ‖2 + α1 ‖∇p − q‖`1 + α0 ‖Eq‖`1 . (17)

Next, we would like to bring this minimization problem into the form (11) described in Section
2.1. For this purpose, we define the spaces H1 := P × V , H2 := S × V ×W and the operators
F : H1 → R

∞ and G : H2 → R
∞ by

F(p, q) := 0, G(g, v,w) :=
µ

2
‖g − f ‖2 + α1 ‖v‖`1 + α0 ‖w‖`1 . (18)

Furthermore, we define the linear operator A : H1 → H2 by

A(p, q) := (Rp,∇p − q, Eq). (19)

With these definitions, the minimization problem (17) can indeed be written in the form
minp,q F(p, q) + G(A(p, q)) and the theory in Section 2.1 can be shown to apply. In particular, we
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can use Algorithm 1 to solve it. For this purpose, we need to compute ‖A‖ and construct proxG∗σ ,
proxFτ and A∗.
The adjoint operator A∗ : H2 → H1 is given by

A∗(g, v,w) = (R∗g − div v,− divw − v). (20)

The operator R∗ in this definition is the adjoint of R and div denotes the discrete divergence on
V andW, respectively. Again we refer to Section A.1 for a detailed description of the discrete
differential operators div on the respective spaces.
For the computation of ‖A‖ we assume without loss of generality that ‖R‖ ≤ 1. Indeed, we

can check this assumption by approximating ‖R‖ by applying the power iteration [61,62] to
approximate the largest eigenvalue λ of R∗R. If λ > 1 and hence ‖R‖ > 1 we can scale the
operator R, its adjoint R∗ and the discrete datum f by a factor 1/λ and end up with a new operator
R which satisfies ‖R‖ ≤ 1. Under this assumption, one can show [38, cf. Section 3.2] that
‖A‖2 <

√
32
2 + 9 < 12.

In our application, we have F ≡ 0. Therefore, it is easy to see that the proximal mapping proxFτ
is given by the identity on H1, i.e.,

proxFτ (p, q) = (p, q),

independently of τ.
To compute the proximal mapping proxG∗σ we first have to compute the Fenchel conjugate G∗.

Due to the fact that the three summands in the definition of G all depend on a different variable
of the product space H2, it follows

G∗(g, v,w) =
( µ
2
‖ · −f ‖2

)∗
(g) + (α1 ‖·‖`1 )∗(v) + (α0 ‖·‖`1 )∗(w).

One can show [63] that in general, there holds (‖ · ‖H)∗(ζ) = χ{ ‖ · ‖∗H ≤1}(ζ), where

χB(ζ) =

{
0, if ζ ∈ B,
∞, otherwise,

and ‖ · ‖∗H is the dual norm of ‖ · ‖H . Furthermore, for a general F and α > 0, it holds that
(αF)∗(ζ)=αF∗(ζ/α). Hence, we get

(α1 ‖·‖`1 )
∗(v) = χ{ ‖ · ‖`∞ ≤α1 }(v), (α0 ‖·‖`1 )

∗(w) = χ{ ‖ · ‖`∞ ≤α0 }(w),

where ‖v‖`∞ = max{|vx,y,z | : 0 ≤ x, y < Nx, 0 ≤ z < Nz} for v ∈ V and analogously for w ∈ W.
Finally, computations yield ( µ

2
‖ · −f ‖2

)∗
(g) =

1
2µ
‖g‖2 + 〈g, f 〉.

We are now ready to compute proxG∗σ . By the same argument as before, we can compute the
proximal mappings of all of the summands of G∗ independently and get

proxG
∗

σ (g, v,w) =
(
prox((µ/2) ‖ ·−f ‖

2)∗

σ (g), prox(α1 ‖ · ‖`1 )
∗

σ (v), prox(α0 ‖ · ‖`1 )
∗

σ (w)
)
. (21)

One can show that
prox((µ/2) ‖ ·−f ‖

2)∗

σ (g) =
µ

µ + σ
(g − σf ), (22)

while the two remaining proximal mappings correspond to the projections

prox(α1 ‖ · ‖`1 )
∗

σ (v) = proj{v∈V: ‖v‖`∞ ≤α1 }(v), (23)
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prox(α0 ‖ · ‖`1 )
∗

σ (w) = proj{w∈W: ‖w‖`∞ ≤α0 }(w), (24)

where

(proj{v∈V: ‖v‖`∞ ≤α1 }(v))
x,y,z =

{
vx,y,z if |vx,y,z | ≤ α1,
α1
|vx,y,z | v

x,y,z if |vx,y,z | > α1,
(25)

and proj{w∈W: ‖w‖`∞ ≤α0 }(w) is defined analogously.

Algorithm 2 Primal Dual Algorithm for the solution of (14)
Estimate ‖R‖ using the power iteration on R∗R and scale R,R∗ and f by 1/‖R‖.
Require: Parameters σ, τ>0, s.t. στ< 1

12
Initialize: p0 = 0, p̄0 = 0 in P, q0 = 0, q̄0 = 0, v0 = 0 in V , w0 = 0 in W, g0 = 0 in S

for n = 0, 1, ...,N − 1 do
Dual Update:

gn+1 = µ
σ+µ (g

n + σ(R p̄n − f ))
vn+1 = proj{v∈V: ‖v‖`∞ ≤α1 } (v

n + σ(∇p̄n − q̄n))
wn+1 = proj{w∈W: ‖w‖`∞ ≤α0 } (w

n + σEq̄n)
Primal Update:

pn+1 = pn − τ(R* gn+1 − div vn+1)
qn+1 = qn + τ(vn+1 + divwn+1)

Extragradient Update:
p̄n+1 = 2pn+1 − pn
q̄n+1 = 2qn+1 − qn

end for
return pN

With this knowledge, one can now apply Algorithm 1 for the solution of the discrete
minimization problem (14), which yields Algorithm 2. For sufficiently large N the result pN can
be regarded as a solution of (14).

3. Experiments and results

To evaluate our PAT reconstruction method we test it using purely numerical data as well as
given real-life data from previous experiments. In particular, we examine how a reduction of
the number of projection angles influences the reconstruction quality. We proceed as described
in Section 2. by first recovering R[p0] via Eq. (6) and then inverting the Radon transform via
Tikhonov regularization with TGV (or TV) as regularization term by solving (10) via Algorithm
2. For the latter we use the software tool Graptor [64], which provides a powerful OpenCL/GPU
implementation that we slightly adapt to allow negative values in the solutions.
In all numerical computations, the number of iterations N in Algorithm 2 is chosen such

that for larger choices, no significant changes in the reconstructed images are noticeable. In
particular, the actual choice of N generally overestimates the number of iterations needed for
obtaining the reconstruction. This way, we ensure that no artifacts or distortions originating
from early stopping appear in the reconstructions. On the other hand, the computation times of
Algorithm 2 essentially depend on the number of iterations, which is why in practice, one should
choose N as small as possible. The difficulty is that the required number of iterations depends on
the considered data and the chosen parameters, in particular on the regularization parameter µ.
Nevertheless, the iterative nature of Algorithm 2 allows to consider intermediate reconstruction
results on the fly, and to stop when these results are satisfactory.

Let us further comment on the choice of the regularization parameter µ in Eq. (7) which acts
as a weighting factor in the minimization problem. If µ is chosen large, then the discrepancy
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term ‖R[p0] − f ‖2 in Eq. (7) dominates and the impact of the regularization term is small.
This is reasonable in case of low noise levels, while in case of high noise levels, µ should be
chosen small. However, a good choice of µ is not known a priori and, in particular, depends
on the considered data. This is why we use various values of µ in the computations and finally
choose the best parameter for each datum manually by a visual comparison of the resulting
reconstructions, selecting the parameter for which obvious artifacts are eliminated or reduced
while at the same time, desired features are sharply visible and not blurred. We emphasize that
this approach is also feasible when no ground truth image is available, as it is the case in the
experimental tests in Section 3.2.
For all computations with TGV as a regularization term we use the parameters α1 = 1 and

α0 = 2.5 (cf. Eq. (9)). The choice of α1 allows for a better comparability with TV as mentioned
before, while the choice of α0 is the default choice in the software tool Graptor [64] and is used
since it yields satisfactory results in all presented computations.

All computations are executed on a work station with an Nvidia Tesla 40K GPU, which features
12GB of GDDR5 RAM and 2880 CUDA cores with 745 MHz clock rate. For comparison we
compute the inverse Radon transform also with a filtered back projection algorithm using the
Matlab routine iradon [65].

3.1. Numerical phantom tests

We start with a purely numerical test to compare the different methods for the inversion of the
Radon transform. For this purpose we take a vessel data set of size 128× 128× 128 voxels which
we reduce to a skeleton using the code in [66]. The pressure of this structure is set to 1. We add
two ellipsoids with variable pressure and a ramp with linearly increasing pressure to this pressure
field. Finally, we select 40 slices resulting in a pressure distribution of size 128× 128× 40, which
we embed in a larger domain for the computations. Overall, the composed phantom contains
typical PAT structures representing the pressure distribution of absorbing vasculature, tumor
structures and tissue background visualized in Fig. 1.

Fig. 1. 3D model of synthetic pressure distribution.

We simulate the measurement process for this initial distribution for 200 and 25 equidistant
angles, respectively, ending up with phase-contrast data PIT (cf. Eq. (1)). Here, we choose the
field of view of the camera so large that it covers the whole wave pattern of the pressure field pT
at measurement time T . This reduces the error of the first reconstruction step according to Eq.
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(6) and allows for a better comparison of the different methods for the inversion of the Radon
transform. For the latter, the number N of iterations in Algorithm 2 is chosen to be 10000 in case
of 200 angles, and 20000 in case of 25 angles. The results of our computations are presented
in Figs. 2 and 3 below. Note that we restrict them to the original size of 128 × 128 × 40 for
better comparability, while the reconstruction space P in the computations has the dimensions
281 × 281 × 40.

Fig. 2. (a)–(f) Maximum amplitude projections along the z axis of the reconstructions of
numerical phantom data containing some thin vessel-like structures, two ellipsoids and a
ramp. The reconstruction method is indicated below each image, together with the choice of
the regularization parameter µ. All images share the same colormap, see (g).

The corresponding computation times for the considered Radon transform inversion methods
with either 200 or 25 angles can be found in Table 1. Since it is a direct method, the computation
times for FBP inversion are significantly lower than the times for the TV- and TGV-based
inversion via an iterative procedure, where TGV only needs slightly more computation time
in comparison to TV. Note that in the actual experiment, we observe sufficient convergence of
the algorithm after 50% of the iterations, such that reconstruction times can easily be halved
without compromising reconstruction quality. The time for the first inversion step (Eq. (6)) is not
included in the values in Table 1. It depends on the number of used angles and is about 2.07 s in
case of 200 angles and 0.26 s in case of 25 angles.
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Fig. 3. (a)–(h) Single slice of the reconstructions of numerical phantom data containing
some thin vessel-like structures, two ellipsoids and a ramp. The reconstruction method is
indicated below each image, together with the choice of the regularization parameter µ. All
images share the same colormap, see (i).
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Table 1. Computation times for direct and variational Radon transform inversion of numerical
phantom data containing some thin vessel-like structures, two ellipsoids and a ramp. The size of

the computation domain is 281 × 281 × 40 voxels.

reconstruction method computation time [s]

FBP, 200 angles 11.9

TV, 200 angles, 10000 iterations 1011.4

TGV, 200 angles, 10000 iterations 1056.8

FBP, 25 angles 8.2

TV, 25 angles, 20000 iterations 359.4

TGV, 25 angles, 20000 iterations 451.4

A popular way to present results of 3D pressure distributions is to display the maximum
amplitude projections (MAP) along the three coordinate axes. This representation is frequently
used due to the better appearance of imaging results but not always useful for clinical purposes
where depth information is a necessity. Exemplary, we present the maximum amplitude
projections of the various reconstructions along the z-axis in Fig. 2.
The pressure in all reconstructions exceeds the interval [0, 1] in contrast to the ground truth

image, which is why we choose the interval [−0.1, 1.15] for the colormap in our visualization. In
the first line of Fig. 2 the ground truth image (a) as well as the FBP (b) and TGV solution (c) for
200 angles are given. We do not present the maximum amplitude projection of the TV solution
for 200 angles here because it is optically not distinguishable from the TGV solution for 200
angles. All reconstructions using 200 angles yield reasonable results. The thin structures appear
to be brighter in the TGV reconstruction. However, they do not have a constant pressure equal
to 1 neither in the FBP nor in the TGV solution. This is visible in the lower right circle, where
one has difficulties to see the knot-like structure formed by the vessel structure, which is clearly
recognizable in the ground truth solution.
In the second line of Fig. 2 the FBP (d), TV (e) and TGV (f) solutions for 25 angles are

given. We have chosen this low number of angles to demonstrate the benefits of TV- and
TGV-regularized Radon inversion over the FBP. While the FBP solution is full of stripe-like
artifacts, we can recover the images quite well when using TV or TGV regularization. The TGV
solution (f) is also free from staircase artifacts, which can be seen for example on the ramp in (e)
and are typical for TV regularization. However, some thin structures disappeared or lost their
intensity in all reconstructions from a reduced number of angles. In particular, some structures
lying inside of the ellipsoids and the ramp, where the surrounding pressure is comparably high,
are affected. Let us discuss this phenomenon further considering a certain slice of the 3D pressure
distribution.
In Fig. 3, we extract a single slice of the 3D pressure distributions shown in Fig. 2. All

phenomena described for Fig. 2 are again visible, in particular, the quality gain using variational
reconstruction with TV and TGV. Nevertheless, we notice in the first row that the reconstruction
quality already slightly suffers for 200 angles in those parts of the solutions with high background
pressures, for example in the upper left ellipse. As it can be expected, quality becomes worse for
reconstruction from 25 angles. The isolated point in the upper left ellipse for example, which is
clearly visible in the ground truth image, cannot be identified in the solutions (d) to (f). Also,
other structures suffer from reduced brightness. This explains why some structures are missing
in the maximum amplitude projections.
Fig. 3 contains an additional row in which the effects of inappropriate choices of the

regularization parameter are observable. In Fig. 3(g), the parameter µ is chosen too small.
Therefore, the regularization term dominates and enforces high smoothness of the solution, such
that the thin structures cannot be recovered. On the other hand, if µ is chosen too large, then the
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effect of the regularization is too weak and some artifacts can persist in the reconstruction, as can
be seen in Fig. 3(h).
Let us point out that for this data set as well as the data sets described below, it turns out that

the regularization parameter µ needs to be chosen in dependence on the number of projections
for the measured data in addition to its signal-to-noise ratio (SNR), with a greater regularization
parameter for less projections. We therefore expect that for fixed SNR, a parameter learning
approach with respect to the model µ(Nϕ) = µ0 + µ1N−1ϕ where µ0 > 0 and µ1 > 0 and Nϕ is
the number of measured projections would yield a practical regularization parameter estimate.
Such an approach has, for instance, successfully been carried out for TGV regularization in the
context of magnetic resonance imaging (MRI) [44], where an affine-linear parameter model in
dependence on the undersampling factor turned out to yield meaningful regularization parameters.
As for radial undersampling in MRI, which exactly corresponds to few-angle tomography, the
undersampling factor is proportional to the reciprocal of the measured projections, we expect
that a straightforward adaptation would also work in the context of PAT imaging.
Finally, we report the peak signal-to-noise ratio (PSNR) and the structural similarity index

(SSIM) for the different reconstruction methods with respect to the ground truth in Table 2 to
quantify our results. Both values are commonly used to measure the similarity of two images,
with high PSNR/SSIM being better and SSIM ranging from 0 to 1. The results in Table 2 confirm
the previous observations. In case that 200 angles are used for the reconstruction, all methods
yield good results, which is what we also observed in Fig. 3. The results for the variational
reconstruction methods are slightly worse according to PSNR and slightly better according to
SSIM. In contrast, in case that only 25 angles are used, the PSNR and SSIM values decrease
drastically for the FBP reconstruction, while they do not change significantly for the TV and
TGV reconstructions.

Table 2. PSNR and SSIM values for the reconstructions obtained from numerical phantom data
containing some thin vessel-like structures, two ellipsoids and a ramp, with respect to the ground

truth.

reconstruction method PSNR [dB] SSIM

FBP, 200 angles 31.06 0.921

TV, 200 angles, µ = 0.5 30.58 0.945

TGV, 200 angles, µ = 0.5 30.68 0.949

FBP, 25 angles 25.06 0.549

TV, 25 angles, µ = 2 30.39 0.937

TGV, 25 angles, µ = 2 30.28 0.943

In summary, we see that the variational reconstruction methods using TV and TGV as
regularizers perform well for the considered numerical phantom. In particular we see that
the number of angles can be reduced without introducing additional artifacts in the resulting
images. However, we also observe that certain small structures can be lost or suffer from reduced
brightness when the number of angles is low. Therefore, the number of angles should not be
reduced too much in general.

3.2. Experimental tests

In this subsection we consider real-life data acquired in previous experiments. The data was
gathered with a camera based ultrasound detection method introduced by Nuster et al. [11]. For
the acquisition of the projection data from many directions the sample is centered in a sample
holder with a center hole, slightly dipped in water for acoustic coupling and mounted on a rotary
table. Pulsed laser light with 532 nm wavelength is used to illuminate the sample from below to
excite the acoustic transients propagating out of the sample towards a volume accessible by the
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probe beam (Fig. 4(a)). Subsequently snap-shots of the acoustic waves are recorded from different
projection angles ϕ of the sample with a CCD-camera (Fig. 4(b)). The timing is achieved using a
probe laser pulse to exposure the camera after a specified delay T with respect to the excitation
laser pulse, which was 7µs for the phantom and 9µs for the in-vivo experiment.

Fig. 4. (a) Schematic showing the coordinate systems relative to the sample (x, y, z) and
relative to the experimental setup (s, r, z). During wave pattern image acquisition the sample
is rotated by an angle ϕ about the z-axis. (b) Image acquisition with the camera-based setup.
The sample is located above the field of view (FOV) of the camera. The data structure is a
snap-shot of the acoustic field at time T and sample orientation ϕ.

The considered data sets, from phantom and in-vivo experiments, contain 200 and 100
projection images, respectively, which are homogeneously distributed over 180°. The phantom
data sets were recorded with the smallest experimentally adjustable angular step size of 0.9°,
and the in-vivo data sets with an angular step size of 1.8°. Hence, the obtainable 3D imaging
resolution Λmin should be 100 µm for the phantom data and 200 µm for the mouse data in a cube
imaging volume with 10 mm side length SL regarding the relation ∆ϕmax = 90◦Λmin/SL, derived
from the Fourier-Slice-Theorem and the Nyquist-criterion [67,68].

The reconstruction of the initial pressure p0 from the data sets is done again by back propagation
of the projection data (Eq. (6)) and the inversion of the Radon transform by either a filtered back
projection algorithm or by Algorithm 2. We compare the results of the reconstruction using once
all 200/100 and once only 50/25 angles and stop Algorithm 2 after 5000 and 10000 iterations,
respectively. Results for the TV-regularized inversion are not shown, because for the two specific
experiments described below, we always attained, with TGV-regularized inversion, at least the
quality of TV-regularized inversion.

3.2.1. Phantom sample

We consider first a phantom sample. This sample was made of three black human hair loops with
diameters ranging from 55 to 70 µm and black polystyrene microspheres with diameters 110
µm embedded in a mixture of 2% agar and 5% intralipid in water to mimic optical scattering
properties of biological tissue. Accordingly, in case of ideal conditions it should be able to
clearly identify loop shaped structures and bright spots in maximum amplitude projection (MAP)
images along z-direction from 3D reconstructions.

We start by reporting the computation times in Table 3. Again, the times for the FBP-inversion
are significantly lower than for the TGV-regularized inversion. All times are higher than the ones
reported in Table 1 which is due to the larger reconstruction space P that consists of 571×571×91
voxels for the experimental phantom sample.
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Table 3. Computation times for direct and variational Radon transform inversion of phantom
sample data containing black human hair loops and black polystyrene microspheres. The

reconstruction space P has the dimensions 571 × 571 × 91.

reconstruction method computation time [s]

FBP, 200 angles 4.0

TGV, 200 angles, 5000 iterations 5449.7

FBP, 50 angles 1.5

TGV, 50 angles, 10000 iterations 3420.3

In Fig. 5 we present the maximum amplitude projection images along the z-axis for 200 and
50 angles, respectively. The results for 200 angles appear reasonable for the FBP reconstruction
in (a) as well as for the TGV reconstruction in (b). If the number of angles is reduced to 50 we
can see prominent stripe artifacts appearing in the MAP image in (c) for the FBP reconstruction.
Such artifacts are expected because the sampling criterion with 3.6° angular step size is obviously
violated for the hair structures with diameters smaller than 400 µm. The TGV result in (d) clearly
shows the advantage of variational regularization methods compared to the standard FBP, since
even image reconstruction with highly undersampled angular data provides reasonable image
quality without stripe artifacts.
In Fig. 6, a single slice of the different solutions is presented. Here we can see that even in

case of 200 angles, the FBP solution suffers from noise and small artifacts. In particular, we
notice a blue, loop-like structure in the center of the image in Fig. 6(a). This does not directly
correspond to a hair loop in the sample but is a ghost artifact that presumably stems from the first
inversion step (cf. Eq. (6)). The noise and the small artifacts are no longer visible in the TGV
solution in (b). The loop-like artifact is reduced, but still present in the center of the reconstructed
image in form of a blurry structure. All other features are preserved in the TGV reconstruction.
When reducing the number of angles, we can clearly see the stripe artifacts in the FBP solution,
which seem to be caused by the long straight part of the hair in this slice. Furthermore, we notice
increased noise artifacts in comparison to the 200 angles FBP solution which cause, in particular,
the two points in the center (which correspond to hair segments orthogonally passing through the
slice) being buried under noise. The TGV solution in Fig. 6(d) is able to eliminate both the noise
and the stripe artifacts. The loop-like artifact in the center is less pronounced than in Fig. 6(b),
but still observable as a strongly blurred structure. However, the two points in the center are
barely visible anymore. In summary, the TGV reconstruction for 50 angles significantly removes
reconstruction artifacts while preserving essentially all features that are recognizable in the FBP
reconstruction.
With a ground truth reconstruction being unavailable for this data set, it is generally hard

to quantify reconstruction quality. One approach that nevertheless yields some quantitative
information is a comparison of the histograms of the reconstructed 3D images for the phantom
sample, see Fig. 7. For this sample, the majority of the reconstructed image can be expected
to be constant zero, and the non-zero values are either caused by reconstruction artifacts or by
the hair loops and microspheres. Neglecting the latter, the histogram around zero can therefore
provide quantitative information about these artifacts. Having this in mind, one can clearly see
that in case of TGV reconstruction, the peak of the histograms is rather centered around zero
while in case of FBP reconstruction, the peak is less localized and resembles more a normal
bell curve, which can be interpreted as the TGV reconstruction having less artifacts than the
FBP reconstruction. Also, computing the mean values and the standard deviations of the various
3D-reconstructions confirms this interpretation. Note that for the computation of these values
we consider all pixels, in particular non-zero pixels corresponding to the features of interest, i.e.
the hair loops and the microspheres. This introduces a bias in the mean value and the standard
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Fig. 5. (a)–(d) Maximum amplitude projections along the z-axis of the phantom sample
containing black human hair loops and black polystyrene microspheres. The reconstruction
method is indicated below each image, together with the choice of the regularization
parameter µ. All images share the same colormap, see (e).
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Fig. 6. (a)–(d) Single slice of the phantom sample containing black human hair loops
and black polystyrene microspheres. The reconstruction method is indicated below each
image, together with the choice of the regularization parameter µ. All images share the same
colormap, see (e).
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deviation which is, however, as mentioned above, small since the ratio of these features and the
zero background is negligibly low. In particular, no segmentation of the data is necessary for the
computations. The resulting mean values and standard deviations for the different reconstructions
are given in Table 4. While the various mean values are reasonably close to zero, the standard
deviations for TGV reconstructed images are considerably lower than for FBP reconstructed
images, which quantitatively confirms the reduction of reconstruction artifacts provided by TGV
regularization for this experiment.

Fig. 7. (a)–(d) Histograms of the 3D reconstructions of the phantom sample containing
black hair loops and black polystyrene microspheres. The reconstruction method is indicated
below each image, together with the choice of the regularization parameter µ.

Table 4. Mean value and standard deviations for various reconstructions of the phantom sample.

reconstruction method mean value standard deviation

FBP, 200 angles −9.65 · 10−8 3.38 · 10−4

TGV, 200 angles, µ = 5 4.25 · 10−7 1.39 · 10−4

FBP, 50 angles −5.53 · 10−7 6.34 · 10−4

TGV, 50 angles, µ = 8 1.94 · 10−7 1.12 · 10−4

3.2.2. In vivo measurements

We present results for an in-vivo data set that was obtained by imaging the hind leg of a 14 week
old female CD1 mouse. Details about the animal experiment that provided the data set are stated
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in [11]. The computation is performed on a reconstruction space P of size 571 × 571 × 151. The
results of the reconstruction of the in vivo measurements are depicted in Figs. 8 and 9.

Fig. 8. (a)–(d) Maximum amplitude projections along the z-axis of the reconstruction of the
in vivo measurements of the hind leg of a mouse. The reconstruction method is indicated
below each image, together with the choice of the regularization parameter µ. All images
share the same colormap, see (e).

In Fig. 8 we show the maximum amplitude projections along the z-axis for 100 and 25 angles,
respectively.
The vasculature structure is clearly visible in the FBP and TGV MAP images when 100

angles are used for the reconstruction (Fig. 8(a) and Fig. 8(b)). As expected, a reduction of the
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Fig. 9. (a)–(d) Close up of a single slice of the reconstruction of the in vivo measurements of
the hind leg of a mouse. The reconstruction method is indicated below each image, together
with the choice of the regularization parameter µ. All images share the same colormap, see
(e). The detail visible in this images is visible in the upper center of the images in Fig. 8.
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background noise level can be identified using full data with TGV reconstruction compared to
FBP. Looking at the results obtained with reduced data (25 angles), the FBP result is strongly
affected by stripe artifacts while the TGV method still performs good showing only a minor
difference compared to the full-data results. Looking at a certain slice image of the reconstruction,
the difference in terms of the noise level and the degree of stripe artifacts between FBP and TGV
is even more pronounced (Fig. 9).

4. Conclusions and outlook

In this paper we have introduced a reconstruction method for photoacoustic tomography images
based on a simple back propagation method and the reconstruction of the initial pressure
distribution from the resulting projection data by the inversion of the Radon transform using
Tikhonov regularization with TGV as regularization term. The results in Section 3.2 show the
benefits of the proposed method. The new method reduces noise significantly and eliminates
also some other artifacts (e.g. stripe artifacts) which arise when using FBP for the inversion of
the Radon transform. In addition, the new method allows for a reduction of the number of angles
in the measurement process: The experiments show that even when only 25% of the angular data
is used, almost all features are still recovered while noise is still reduced significantly. If a FBP
algorithm is used instead of the proposed method, the reduction of the angles introduces higher
noise levels and stripe artifacts, which render the results useless. However, also in case of TGV
reconstruction, small features in single slices can suffer from reduced brightness or even be lost
when the number of angles is reduced. Hence, a drastic reduction of the angles is reasonable
only in applications where small details are of minor interest.

In future works it would be of interest to study the influence of randomly chosen non-uniform
distributions of the angles on the proposed method instead of uniform distributions. Indeed, as
mentioned before, randomized sampling strategies are successfully considered in the field of
compressed sensing, for example in [32] in the context of PAT. Another possible extension of
the proposed reconstruction method would be a regularization of the full inversion process, i.e.
including the backwards wave propagation. This could help to eliminate further artifacts and
increase the quality of the reconstruction even for a reduced number of angles. However, there
are several challenges concerning the development of such an algorithm. In particular, very
fast implementations of a forward propagation algorithm and its adjoint are needed due to the
iterative nature of the considered algorithm for the regularized inversion. Hence, this is open for
future work.

A. Appendix

A.1. Discretization of the differential operators

In Section 2.2, the discrete differential operators ∇, E and div are introduced and mentioned that
these operators can be implemented using a standard finite difference approach. We will give the
details of this implementation here.

Let the spaces P, V and W be given by Eq. (13). Recall that we write an element p ∈ P in the
form (px,y,z)Nx−1,Nx−1,Nz−1

x=0,y=0,z=0 . We define the forward differential operator δ+x : P→ P by

(δ+x p)
x,y,z :=

{
px+1,y,z − px,y,z, if x ∈ {0, . . . ,Nx − 2},
0, otherwise,

and the backward differential operator δ−x : P→ P by

(δ−x p)
x,y,z :=

{
px,y,z − px−1,y,z, if x ∈ {1, . . . ,Nx − 1},
0, otherwise.
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The two forward differential operators δ+y , δ+z : P→ P and the two backward differential operators
δ−y , δ−z : P → P are defined analogously. Using these operators we can define the discrete
gradient ∇ : P→ V and the discrete symmetrized Jacobian E : V → W by

∇p :=
(
δ+x p, δ+y p, δ+z p

)
, (26)

Eq :=

(
δ−x q

1, δ−y q2, δ−z q3,
δ−x q2 + δ−y q1

2
,
δ−x q3 + δ−z q1

2
,
δ−y q3 + δ−z q2

2

)
. (27)

The operators div : V → P and div : W → V have to satisfy div = −∇∗ and div = −E∗,
respectively. For this purpose we introduce the forward differential operator δ+,∗x : P→ P by

(δ+,∗x p)x,y,z :=


px+1,y,z − px,y,z if x ∈ {1, . . . ,Nx − 2},
p1,y,z, if x = 0,
−pNx−1,y,z, if x = Nx − 1,

and the backward differential operator δ−,∗x : P→ P by

(δ−,∗x p)x,y,z :=


px,y,z − px−1,y,z, if x ∈ {1, . . . ,Nx − 2},
p0,y,z, if x = 0,
−pNx−2,y,z, if x = Nx − 1.

With these definitions it holds (δ+x )∗ = −δ
−,∗
x and (δ−x )∗ = −δ

+,∗
x . Again, we define the forward

differential operators δ+,∗y , δ+,∗z : P → P and the two backward differential operators δ−,∗y ,
δ−,∗z : P→ P analogously. Then, the divergence operators defined by

div v = δ−,∗x v1 + δ−,∗y v2 + δ−,∗z v3,

divw =
(
δ+,∗x w1 + δ+,∗y w4 + δ+,∗z w5, δ+,∗x w4 + δ+,∗y w2 + δ+,∗z w6, δ+,∗x w5 + δ+,∗y w6 + δ+,∗z w3

)
,

satisfy the desired adjointness properties.

A.2. Radon inversion algorithm using TV instead of TGV

In Section 2.2, TGV is used as a regularizer to solve the discrete version of the minimization
problem (7). Here, we will give the details about the necessary changes if TV is used instead of
TGV. The minimization problem we consider is

min
p∈P

µ

2
‖Rp − f ‖2 + α ‖∇p‖`1 . (28)

for α > 0. We use ‖∇p‖`1 as a discretization of TV, which can be motivated as in the case of
TGV. By defining the spaces H1 = P and H2 = S × V , as well as the operators F : H1 → R

∞,
G : H2 → R

∞ and A : H1 → H2 by

F(p) = 0, G(g, v) =
µ

2
‖g − f ‖2 + α ‖v‖`1 , A = (Rp,∇p),

we see that we have again a problem of the form (11). Similarly as in Section 2.2, one can see that

A∗(g, v) = R∗g − div v, (29)

proxFτ (p) = p, proxG
∗

σ (g, v) =
(

µ

µ + σ
(g − σf ), proj{v∈V: ‖v‖`∞ ≤α}(v)

)
, (30)

and by assuming ‖R‖ ≤ 1, one can show that ‖A‖2 < 9.
This allows us to apply Algorithm 1, which can be rewritten in the form of Algorithm 3. It

yields the approximate solution pN .



Research Article Vol. 11, No. 2 / 1 February 2020 / Biomedical Optics Express 1017

Algorithm 3 Primal Dual Algorithm for the solution of (28)
Estimate ‖R‖ using the power iteration on R∗R and scale R,R∗ and f by 1/‖R‖ if necessary.
Require: Parameters σ, τ>0, s.t. στ< 1

9
Initialize: p0 = 0, p̄0 = 0 in P, v0 = 0 in V , g0 = 0 in S

for n = 0, 1, ...,N − 1 do
Dual Update:

gn+1 = µ
σ+µ (g

n + σ(R p̄n − f ))
vn+1 = proj{v∈V: ‖v‖`∞ ≤α} (v

n + σ∇p̄n)
Primal Update:

pn+1 = pn − τ(R* gn+1 − div vn+1)
Extragradient Update:

p̄n+1 = 2pn+1 − pn
end for

return pN
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